
Automated Ambiguity Detection in Layout-Sensitive

Grammars

Jiangyi LIU†* 1 Fengmin (Paul) ZHU† 2 Fei HE3

October 27, 2023

1Tsinghua University and University of Wisconsin-Madison

2Tsinghua University and CISPA Helmholtz Center for Information Security

3Tsinghua University

† Equally contributed.

* This work was done at Tsinghua University.

What Are Layout-Sensitive Grammars?

Grammars where indentations and whitespaces affect parsing.

if False:

print(1, end=' ')

print(2)

Output: 2

if False:

print(1, end=' ')

print(2)

Output: Nothing

1

What Are Layout-Sensitive Grammars?

Grammars where indentations and whitespaces affect parsing.

if False:

print(1, end=' ')

print(2)

Output: 2

if False:

print(1, end=' ')

print(2)

Output: Nothing

1

Why Using Them?

• Elegant and stylized; no disturbing symbols

• Readability counts — Zen of Python

That programmer would love Scala 3!

object Permuter:

private def permute(n: Int, a: Array[Char]): Unit =

if n == 0 then

println(String.valueOf(a))

else

for i <- 0 to n do

permute(n-1, a)

swap(a, if n % 2 == 0 then i else 0, n)

private def swap(a: Array[Char], i: Int, j: Int) =

val saved = a(i)

a(i) = a(j)

a(j) = saved

2

Why Using Them?

• Elegant and stylized; no disturbing symbols

• Readability counts — Zen of Python

That programmer would love Scala 3!

object Permuter:

private def permute(n: Int, a: Array[Char]): Unit =

if n == 0 then

println(String.valueOf(a))

else

for i <- 0 to n do

permute(n-1, a)

swap(a, if n % 2 == 0 then i else 0, n)

private def swap(a: Array[Char], i: Int, j: Int) =

val saved = a(i)

a(i) = a(j)

a(j) = saved

2

Why Using Them?

• Elegant and stylized; no disturbing symbols

• Readability counts — Zen of Python

That programmer would love Scala 3!

object Permuter:

private def permute(n: Int, a: Array[Char]): Unit =

if n == 0 then

println(String.valueOf(a))

else

for i <- 0 to n do

permute(n-1, a)

swap(a, if n % 2 == 0 then i else 0, n)

private def swap(a: Array[Char], i: Int, j: Int) =

val saved = a(i)

a(i) = a(j)

a(j) = saved

2

Why Using Them?

• Elegant and stylized; no disturbing symbols

• Readability counts — Zen of Python

That programmer would love Scala 3!

object Permuter:

private def permute(n: Int, a: Array[Char]): Unit =

if n == 0 then

println(String.valueOf(a))

else

for i <- 0 to n do

permute(n-1, a)

swap(a, if n % 2 == 0 then i else 0, n)

private def swap(a: Array[Char], i: Int, j: Int) =

val saved = a(i)

a(i) = a(j)

a(j) = saved 2

Ambiguity Matters

A useful new layout-sensitive grammar should be unambiguous.

3

Manually Checking Ambiguity is Hard

Let’s consider a layout-sensitive grammar:

block → ∥stmt∥+

stmt → nop | do block

stmt1

stmt2

...

stmtn

Q: Is this grammar ambiguous?

4

Manually Checking Ambiguity is Hard

Let’s consider a layout-sensitive grammar:

block → ∥stmt∥+

stmt → nop | do block

stmt1

stmt2

...

stmtnQ: Is this grammar ambiguous?

4

It Is Ambiguous

do

nop

nop

[do@(1, 1),

nop@(2, 1),

nop@(3, 1)]

block

stmt+

stmt

do@(1, 1) block

stmt+

stmt

nop@(2, 1)

stmt

nop@(3, 1)

parse tree t1

block

stmt+

stmt

do@(1, 1) block

stmt+

stmt

nop@(2, 1)

stmt

nop@(3, 1)

parse tree t2

5

Lessons

Ambiguity should be detected automatically, not manually.

• Q: But isn’t ambiguity undecidable?

• A: Find an incomplete but useful way.

6

Lessons

Ambiguity should be detected automatically, not manually.

• Q: But isn’t ambiguity undecidable?

• A: Find an incomplete but useful way.

6

Lessons

Ambiguity should be detected automatically, not manually.

• Q: But isn’t ambiguity undecidable?

• A: Find an incomplete but useful way.

6

Bounded Ambiguity Checking

Definition (Bounded ambiguity)
Given a layout-sensitive grammar G , is there a sentence of length up to k that has

multiple parse trees?

7

Bounded Ambiguity Checking

Axelsson’s1

bAMB Encoding

bAMB with

layout constraints

SAT Solving SMT Solving

Context-Free Grammar Our Initial Idea

extension?

direct

Unsound!Sound!

1Axelsson, Roland, Keijo Heljanko, and Martin Lange. “Analyzing context-free grammars using an

incremental SAT solver.” ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II 35.

Springer Berlin Heidelberg, 2008. 8

Bounded Ambiguity Checking

Axelsson’s1

bAMB Encoding

bAMB with

layout constraints

SAT Solving SMT Solving

Context-Free Grammar Our Initial Idea

extension?

direct

Unsound!

Sound!

1Axelsson, Roland, Keijo Heljanko, and Martin Lange. “Analyzing context-free grammars using an

incremental SAT solver.” ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II 35.

Springer Berlin Heidelberg, 2008. 8

Bounded Ambiguity Checking

Axelsson’s1

bAMB Encoding

Local Ambiguity

(our work)

SAT Solving SMT Solving

Context-Free Grammar Our Idea

Unsound!

Sound!

1Axelsson, Roland, Keijo Heljanko, and Martin Lange. “Analyzing context-free grammars using an

incremental SAT solver.” ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II 35.

Springer Berlin Heidelberg, 2008. 8

Framework for Layout-Sensitive Ambiguity Detection

our tool

Local

ambiguity

Standard

ambiguity

SMT

encoding

Z3 SMT

solver

grammar

+ bound k
ambiguous

sentence +

parse trees

k-bounded

unambiguous

iff

iff our theory

9

Framework for Layout-Sensitive Ambiguity Detection

our tool

Local

ambiguity

Standard

ambiguity

SMT

encoding

Z3 SMT

solver

grammar

+ bound k
ambiguous

sentence +

parse trees

k-bounded

unambiguous

iff

iff our theory

9

Axelsson’s bAMB Encoding

𝐴

𝑡!

⋮
𝑤

𝑆

𝑡# 𝑡$
⋮ ⋮

𝑎 𝑏

⋯ ⋯ ⋯
𝐴

𝑡!
⋮

𝑤

∃?

𝐴

𝑡&

⋮
𝑤

𝑆

𝑡# 𝑡$
⋮ ⋮

𝑎 𝑏

⋯ ⋯ ⋯
𝐴

𝑡&
⋮

𝑤

bAMB = subtrees differ on the first level

10

Axelsson’s bAMB is Unsound

The following grammer is unambiguous:

S → LAM A → B1 A → B2

B1 → C ∥ C B2 → C C C → c

11

Axelsson’s bAMB is Unsound

The following grammer is unambiguous:

S → LAM A → B1 A → B2

B1 → C ∥ C B2 → C C C → c

L · M: all tokens derived are on the same line

11

Axelsson’s bAMB is Unsound

The following grammer is unambiguous:

S → LAM A → B1 A → B2

B1 → C ∥ C B2 → C C C → c

· ∥ ·: first tokens produced by both sides lie at the same column

11

Axelsson’s bAMB is Unsound

S → LAM A → B1 A → B2

B1 → C ∥ C B2 → C C C → c

... but the following example satisfies bAMB:

c

c
A

B1

C

c@(1, 1)

C

c@(2, 1)

t1 (valid) ̸=

A

B2

C

c@(1, 1)

C

c@(2, 1)

t2 (valid)

S

t1

T1 (invalid)

S

t2

T2 (invalid)

12

Axelsson’s bAMB is Unsound

S → LAM A → B1 A → B2

B1 → C ∥ C B2 → C C C → c

... but the following example satisfies bAMB:

c

c
A

B1

C

c@(1, 1)

C

c@(2, 1)

t1 (valid) ̸=

A

B2

C

c@(1, 1)

C

c@(2, 1)

t2 (valid)

S

t1

T1 (invalid)

S

t2

T2 (invalid) 12

Why This Happens to Layout-Sensitive Grammars?

The complete parse trees can still be malformed/invalid,

even if valid ambiguous subtrees exist!

Solution: drop subtrees that are unreachable from the start symbol.

13

Why This Happens to Layout-Sensitive Grammars?

The complete parse trees can still be malformed/invalid,

even if valid ambiguous subtrees exist!

Solution: drop subtrees that are unreachable from the start symbol.

13

Reachability (for Context-Free Grammars)

Definition
Nonterminal A is reachable2 in context-free grammar G from symbol S if there exists a

derivation S ⇒∗ αAβ for some sentential forms α and β.

2Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman. 2006. “Introduction to automata theory,

languages, and computation (3rd Edition).” Addison-Wesley Longman Publishing Co., Inc., USA.

14

Reachability (for Layout-Sensitive Grammars)

Given a subtree with A as root and derives sentence w

𝐴

𝑡

⋮
𝑤

𝑆

𝑡" 𝑡#
⋮ ⋮

𝑎 𝑏

⋯ ⋯ ⋯𝐴

𝑡

⋮
𝑤

∃?

15

Local Ambiguity

Intuitively, local ambiguity is essentially

bAMB ∧ reachability

Theorem
(Equivalence between (standard) ambiguity and local ambiguity)

(A,w) is locally ambiguous iff the derivation A⇒∗ w is ambiguous.

16

Local Ambiguity

Intuitively, local ambiguity is essentially

bAMB ∧ reachability

Theorem
(Equivalence between (standard) ambiguity and local ambiguity)

(A,w) is locally ambiguous iff the derivation A⇒∗ w is ambiguous.

16

Encoding Local Ambiguity

Φ(k) ≜ ΦD(k) ∧ Φε
R(k) ∧ Φ ̸ε

R(k)

∧
∨
H∈N

(RH
ε ∧ Φmulti(H, 0, 0)) ∨

∨
0<δ

x+δ≤k

(RH
x ,δ ∧ Φmulti(H, x , δ))



• ΦD(k): the sentence can be derived in given grammar

• Φmulti(H, x , δ): at least two parse trees exist

• Φε
R(k), Φ

̸ε
R(k), R

H
ε , RH

x ,δ: reachability conditions

bAMB

17

Soundness & Completeness of Encoding

Our encoding Φ(k) is bounded sound and complete:

Soundness Any sentence w that satisfies Φ(k) ⇒ w is ambiguous.

Completeness If there exists an ambiguous sentence of length k, then Φ(k) is

satisfiable.

18

Take-Home Messages

• Ambiguity is important in language design.

• Proof assistant can help with finding design flaws in encoding.

• SMT solving is powerful for formal language research.

262

Automated Ambiguity Detection in Layout-Sensitive
Grammars
JIANGYI LIU∗, Tsinghua University, China
FENGMIN ZHU∗, Tsinghua University, China and CISPA Helmholtz Center for Information Security,
Germany
FEI HE†, Tsinghua University, China, Key Laboratory for Information System Security, Ministry of Education,
China, and Beijing National Research Center for Information Science and Technology, China

Layout-sensitive grammars have been adopted in many modern programming languages. In a serious language
design phase, the speci�ed syntax—typically a grammar—must be unambiguous. Although checking ambiguity
is undecidable for context-free grammars and (trivially also) layout-sensitive grammars, ambiguity detection,
on the other hand, is possible and can bene�t language designers from exposing potential design �aws.

In this paper, we tackle the ambiguity detection problem in layout-sensitive grammars. Inspired by a
previous work on checking the bounded ambiguity of context-free grammars via SAT solving, we intensively
extend their approach to support layout-sensitive grammars but via SMT solving to express the ordering and
quantitative relations over line/column numbers. Our key novelty lies in a reachability condition, which takes
the impact of layout constraints on ambiguity into careful account. With this condition in hand, we propose
an equivalent ambiguity notion called local ambiguity for the convenience of SMT encoding. We translate
local ambiguity into an SMT formula and developed a bounded ambiguity checker that automatically �nds a
shortest nonempty ambiguous sentence (if exists) for a user-input grammar. The soundness and completeness of
our SMT encoding are mechanized in the Coq proof assistant. We conducted an evaluation on both grammar
fragments and full grammars extracted from the language manuals of domain-speci�c languages like YAML
as well as general-purpose languages like Python, which reveals the e�ectiveness of our approach.
CCS Concepts: • Software and its engineering→ Syntax; Parsers; •Theory of computation→Grammars
and context-free languages; Constraint and logic programming.

Additional Key Words and Phrases: layout-sensitive grammar, ambiguity, SMT, Coq
ACM Reference Format:
Jiangyi Liu, Fengmin Zhu, and Fei He. 2023. Automated Ambiguity Detection in Layout-Sensitive Grammars.
Proc. ACM Program. Lang. 7, OOPSLA2, Article 262 (October 2023), 26 pages. https://doi.org/10.1145/3622838

1 INTRODUCTION
Layout-sensitive (or indentation-sensitive) grammars were �rst proposed by Landin [1966]. Nowa-
days, they have been adopted in many programming languages, e.g., Python [Van Rossum and
Drake 2011], Haskell [Marlow et al. 2010], F# [Syme et al. 2010], Yaml [Evans et al. 2014] and
∗Both authors contributed equally to this work.
†Corresponding author.

Authors’ addresses: Jiangyi Liu, School of Software, Tsinghua University, Beijing, 100084, China, liujiang19@mails.tsinghua.
edu.cn; Fengmin Zhu, School of Software, Tsinghua University, Beijing, 100084, China and CISPA Helmholtz Center for
Information Security, Saarbrücken, Saarland, 66123, Germany, fengmin.zhu@cispa.de; Fei He, School of Software, Tsinghua
University, Beijing, 100084, China and Key Laboratory for Information System Security, Ministry of Education, Beijing,
China and Beijing National Research Center for Information Science and Technology, Beijing, China, hefei@tsinghua.edu.cn.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
2475-1421/2023/10-ART262
https://doi.org/10.1145/3622838

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Check our website:

19

https://lay-it-out.github.io/

Take-Home Messages

• Ambiguity is important in language design.

• Proof assistant can help with finding design flaws in encoding.

• SMT solving is powerful for formal language research.

262

Automated Ambiguity Detection in Layout-Sensitive
Grammars
JIANGYI LIU∗, Tsinghua University, China
FENGMIN ZHU∗, Tsinghua University, China and CISPA Helmholtz Center for Information Security,
Germany
FEI HE†, Tsinghua University, China, Key Laboratory for Information System Security, Ministry of Education,
China, and Beijing National Research Center for Information Science and Technology, China

Layout-sensitive grammars have been adopted in many modern programming languages. In a serious language
design phase, the speci�ed syntax—typically a grammar—must be unambiguous. Although checking ambiguity
is undecidable for context-free grammars and (trivially also) layout-sensitive grammars, ambiguity detection,
on the other hand, is possible and can bene�t language designers from exposing potential design �aws.

In this paper, we tackle the ambiguity detection problem in layout-sensitive grammars. Inspired by a
previous work on checking the bounded ambiguity of context-free grammars via SAT solving, we intensively
extend their approach to support layout-sensitive grammars but via SMT solving to express the ordering and
quantitative relations over line/column numbers. Our key novelty lies in a reachability condition, which takes
the impact of layout constraints on ambiguity into careful account. With this condition in hand, we propose
an equivalent ambiguity notion called local ambiguity for the convenience of SMT encoding. We translate
local ambiguity into an SMT formula and developed a bounded ambiguity checker that automatically �nds a
shortest nonempty ambiguous sentence (if exists) for a user-input grammar. The soundness and completeness of
our SMT encoding are mechanized in the Coq proof assistant. We conducted an evaluation on both grammar
fragments and full grammars extracted from the language manuals of domain-speci�c languages like YAML
as well as general-purpose languages like Python, which reveals the e�ectiveness of our approach.
CCS Concepts: • Software and its engineering→ Syntax; Parsers; •Theory of computation→Grammars
and context-free languages; Constraint and logic programming.

Additional Key Words and Phrases: layout-sensitive grammar, ambiguity, SMT, Coq
ACM Reference Format:
Jiangyi Liu, Fengmin Zhu, and Fei He. 2023. Automated Ambiguity Detection in Layout-Sensitive Grammars.
Proc. ACM Program. Lang. 7, OOPSLA2, Article 262 (October 2023), 26 pages. https://doi.org/10.1145/3622838

1 INTRODUCTION
Layout-sensitive (or indentation-sensitive) grammars were �rst proposed by Landin [1966]. Nowa-
days, they have been adopted in many programming languages, e.g., Python [Van Rossum and
Drake 2011], Haskell [Marlow et al. 2010], F# [Syme et al. 2010], Yaml [Evans et al. 2014] and
∗Both authors contributed equally to this work.
†Corresponding author.

Authors’ addresses: Jiangyi Liu, School of Software, Tsinghua University, Beijing, 100084, China, liujiang19@mails.tsinghua.
edu.cn; Fengmin Zhu, School of Software, Tsinghua University, Beijing, 100084, China and CISPA Helmholtz Center for
Information Security, Saarbrücken, Saarland, 66123, Germany, fengmin.zhu@cispa.de; Fei He, School of Software, Tsinghua
University, Beijing, 100084, China and Key Laboratory for Information System Security, Ministry of Education, Beijing,
China and Beijing National Research Center for Information Science and Technology, Beijing, China, hefei@tsinghua.edu.cn.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
2475-1421/2023/10-ART262
https://doi.org/10.1145/3622838

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Check our website:

19

https://lay-it-out.github.io/

	Introduction
	Local Ambiguity
	Conclusion

