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What Are Layout-Sensitive Grammars?

Grammars where indentations and whitespaces affect parsing.

if False: if False:
print(1, end=" ") print(1, end=" ")
print(2) print(2)

# Output: 2 # Output: Nothing
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Why Using Them?

e Elegant and stylized; no disturbing symbols

@ r/ProgrammerHumor - 9 yr. ago
& byb3n

A Python programmer attempting Java

Permuter
void permute(int n, char[] a)
(n 0)
System.out.println(String.valueOf(a))

oo Lane Nann |

(IRISIT="0:11 n; i++)
permute(n-1, a)
swap(a, n % 2 @71i:0, n)
void swap(char[] a, int i, int j)
char saved - ali]
ali] = aljl
aljl = saved
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Why Using Them?

e Elegant and stylized; no disturbing symbols
e Readability counts — Zen of Python

That programmer would love Scala 3!

object Permuter:

private def permute(n: Int, a: Array[Char]): Unit
if n == 0 then
println(String.valueOf(a))
else
for i <- 0 to n do
permute(n-1, a)
swap(a, if n % 2 == @ then i else 0, n)

private def swap(a: Array[Char], i: Int, j: Int) =
val saved = a(i)
a(i) = a(d)
a(j) = saved 2



Ambiguity Matters

A useful new layout-sensitive grammar should be unambiguous.



Manually Checking Ambiguity is Hard

Let's consider a layout-sensitive grammar:

| stmt
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stmt — nop | do block

" stmt,,



Manually Checking Ambiguity is Hard

Let's consider a layout-sensitive grammar:

| stmty
+ |
block — ||stmt]| | stmts
stmt — nop | do block
Q: Is this grammar ambiguous? | stmt,



It Is Ambiguous
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Lessons

Ambiguity should be detected automatically, not manually.

e Q: But isn't ambiguity undecidable?

e A: Find an incomplete but useful way.



Bounded Ambiguity Checking

Definition (Bounded ambiguity)
Given a layout-sensitive grammar G, is there a sentence of length up to k that has

multiple parse trees?



Bounded Ambiguity Checking

Axelsson’s! direct . bAMB with
bAMB Encoding extension? : layout constraints
SAT Solving fp=============d SMT Solving
Context-Free Grammar Our Initial Idea

! Axelsson, Roland, Keijo Heljanko, and Martin Lange. “Analyzing context-free grammars using an
incremental SAT solver.” ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part Il 35.
Springer Berlin Heidelberg, 2008. 8
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Bounded Ambiguity Checking

Axelsson’s!

bAMB Encoding

h 4

SAT Solving

Local Ambiguity
(our work)

Context-Free Grammar

~

SMT Solving

Our Idea

! Axelsson, Roland, Keijo Heljanko, and Martin Lange. “Analyzing context-free grammars using an
incremental SAT solver.” ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part Il 35.

Springer Berlin Heidelberg, 2008.



Framework for Layout-Sensitive Ambiguity Detection
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Framework for Layout-Sensitive Ambiguity Detection
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Axelsson’s bAMB Encoding
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bAMB = subtrees differ on the first level
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Axelsson’s bAMB is Unsound

The following grammer is unambiguous:

Bi—C|C B,—CC C—c
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Axelsson’s bAMB is Unsound

The following grammer is unambiguous:
S— (A) A— B A— B

Bi—C|C B, -~ CC C—c

(-): all tokens derived are on the same line
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Axelsson’s bAMB is Unsound

The following grammer is unambiguous:

Bi— C|C B,—CC C—c

- || -+ first tokens produced by both sides lie at the same column
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Axelsson’s bAMB is Unsound
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... but the following example satisfies bAMB:
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Axelsson’s bAMB is Unsound

S —(A) A— B A— B

Bi—C|C B,—CC C—c

... but the following example satisfies bAMB:
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Why This Happens to Layout-Sensitive Grammars?

The complete parse trees can still be malformed/invalid,

even if valid ambiguous subtrees exist!
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Why This Happens to Layout-Sensitive Grammars?

The complete parse trees can still be malformed /invalid,

even if valid ambiguous subtrees exist!

Solution: drop subtrees that are unreachable from the start symbol.
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Reachability (for Context-Free Grammars)

Definition
Nonterminal A is reachable? in context-free grammar G from symbol S if there exists a
derivation S =, aA( for some sentential forms « and f3.

2Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman. 2006. “Introduction to automata theory,
languages, and computation (3rd Edition).” Addison-Wesley Longman Publishing Co., Inc., USA.
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Reachability (for Layout-Sensitive Grammars)

Given a subtree with A as root and derives sentence w

ep
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Local Ambiguity

Intuitively, local ambiguity is essentially

bAMB A reachability
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Local Ambiguity

Intuitively, local ambiguity is essentially

bAMB A reachability

Theorem
(Equivalence between (standard) ambiguity and local ambiguity)

(A, w) is locally ambiguous iff the derivation A=, w is ambiguous.
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Encoding Local Ambiguity

O(k) £ dp(k) A Dx(K) A O(K)

AN [ REAOui(H,0,0)) v \/ (RE5 A i (H, x,5))

HeN 0<d
x+6<k

e ®p(k): the sentence can be derived in given grammar}
bAMB
o & uii(H, x,0): at least two parse trees exist

o O%(k), ®%(k), RH, RH: reachability conditions
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Soundness & Completeness of Encoding

Our encoding ®(k) is bounded sound and complete:

Soundness Any sentence w that satisfies (k) = w is ambiguous.

Completeness |If there exists an ambiguous sentence of length k, then ®(k) is
satisfiable.
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Take-Home Messages

e Ambiguity is important in language design.
e Proof assistant can help with finding design flaws in encoding.
e SMT solving is powerful for formal language research.
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