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What Are Layout-Sensitive Grammars?

Grammars where indentations and whitespaces affect parsing.

if False:

print(1, end=' ')

print(2)

# Output: 2

if False:

print(1, end=' ')

print(2)

# Output: Nothing
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Why Using Them?

• Elegant and stylized; no disturbing symbols

• Readability counts — Zen of Python

That programmer would love Scala 3!

object Permuter:

private def permute(n: Int, a: Array[Char]): Unit =

if n == 0 then

println(String.valueOf(a))

else

for i <- 0 to n do

permute(n-1, a)

swap(a, if n % 2 == 0 then i else 0, n)

private def swap(a: Array[Char], i: Int, j: Int) =

val saved = a(i)

a(i) = a(j)

a(j) = saved
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Ambiguity Matters

A useful new layout-sensitive grammar should be unambiguous.
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Manually Checking Ambiguity is Hard

Let’s consider a layout-sensitive grammar:

block → ∥stmt∥+

stmt → nop | do block

stmt1

stmt2

...

stmtn

Q: Is this grammar ambiguous?
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It Is Ambiguous

do

nop

nop

[do@(1, 1),

nop@(2, 1),

nop@(3, 1)]

block

stmt+

stmt

do@(1, 1) block

stmt+

stmt

nop@(2, 1)

stmt

nop@(3, 1)

parse tree t1

block

stmt+

stmt

do@(1, 1) block

stmt+

stmt

nop@(2, 1)

stmt

nop@(3, 1)

parse tree t2
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Lessons

Ambiguity should be detected automatically, not manually.

• Q: But isn’t ambiguity undecidable?

• A: Find an incomplete but useful way.
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Bounded Ambiguity Checking

Definition (Bounded ambiguity)
Given a layout-sensitive grammar G , is there a sentence of length up to k that has

multiple parse trees?
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Bounded Ambiguity Checking

Axelsson’s1

bAMB Encoding

bAMB with

layout constraints

SAT Solving SMT Solving

Context-Free Grammar Our Initial Idea

extension?

direct

Unsound!Sound!

1Axelsson, Roland, Keijo Heljanko, and Martin Lange. “Analyzing context-free grammars using an

incremental SAT solver.” ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II 35.

Springer Berlin Heidelberg, 2008. 8
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Bounded Ambiguity Checking

Axelsson’s1

bAMB Encoding

Local Ambiguity

(our work)

SAT Solving SMT Solving

Context-Free Grammar Our Idea

Unsound!

Sound!
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Framework for Layout-Sensitive Ambiguity Detection

our tool

Local

ambiguity

Standard

ambiguity

SMT

encoding

Z3 SMT

solver

grammar

+ bound k
ambiguous

sentence +

parse trees

k-bounded

unambiguous

iff

iff our theory
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Axelsson’s bAMB Encoding

𝐴

𝑡!

⋮
𝑤

𝑆

𝑡# 𝑡$
⋮ ⋮

𝑎 𝑏

⋯ ⋯ ⋯
𝐴

𝑡!
⋮

𝑤

∃?

𝐴

𝑡&

⋮
𝑤

𝑆

𝑡# 𝑡$
⋮ ⋮

𝑎 𝑏

⋯ ⋯ ⋯
𝐴

𝑡&
⋮

𝑤

bAMB = subtrees differ on the first level
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Axelsson’s bAMB is Unsound

The following grammer is unambiguous:

S → LAM A → B1 A → B2

B1 → C ∥ C B2 → C C C → c
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The following grammer is unambiguous:
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L · M: all tokens derived are on the same line
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Axelsson’s bAMB is Unsound

The following grammer is unambiguous:

S → LAM A → B1 A → B2

B1 → C ∥ C B2 → C C C → c

· ∥ ·: first tokens produced by both sides lie at the same column
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Axelsson’s bAMB is Unsound

S → LAM A → B1 A → B2

B1 → C ∥ C B2 → C C C → c

... but the following example satisfies bAMB:

c

c
A

B1

C

c@(1, 1)

C

c@(2, 1)

t1 (valid) ̸=

A

B2

C

c@(1, 1)

C

c@(2, 1)

t2 (valid)

S

t1

T1 (invalid)

S

t2

T2 (invalid)
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Why This Happens to Layout-Sensitive Grammars?

The complete parse trees can still be malformed/invalid,

even if valid ambiguous subtrees exist!

Solution: drop subtrees that are unreachable from the start symbol.
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Reachability (for Context-Free Grammars)

Definition
Nonterminal A is reachable2 in context-free grammar G from symbol S if there exists a

derivation S ⇒∗ αAβ for some sentential forms α and β.

2Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman. 2006. “Introduction to automata theory,

languages, and computation (3rd Edition).” Addison-Wesley Longman Publishing Co., Inc., USA.
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Reachability (for Layout-Sensitive Grammars)

Given a subtree with A as root and derives sentence w

𝐴

𝑡

⋮
𝑤

𝑆

𝑡" 𝑡#
⋮ ⋮

𝑎 𝑏

⋯ ⋯ ⋯𝐴

𝑡

⋮
𝑤

∃?
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Local Ambiguity

Intuitively, local ambiguity is essentially

bAMB ∧ reachability

Theorem
(Equivalence between (standard) ambiguity and local ambiguity)

(A,w) is locally ambiguous iff the derivation A⇒∗ w is ambiguous.
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Encoding Local Ambiguity

Φ(k) ≜ ΦD(k) ∧ Φε
R(k) ∧ Φ ̸ε

R(k)

∧
∨
H∈N

(RH
ε ∧ Φmulti(H, 0, 0)) ∨

∨
0<δ

x+δ≤k

(RH
x ,δ ∧ Φmulti(H, x , δ))



• ΦD(k): the sentence can be derived in given grammar

• Φmulti(H, x , δ): at least two parse trees exist

• Φε
R(k), Φ

̸ε
R(k), R

H
ε , RH

x ,δ: reachability conditions

bAMB
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Soundness & Completeness of Encoding

Our encoding Φ(k) is bounded sound and complete:

Soundness Any sentence w that satisfies Φ(k) ⇒ w is ambiguous.

Completeness If there exists an ambiguous sentence of length k, then Φ(k) is

satisfiable.

18



Take-Home Messages

• Ambiguity is important in language design.

• Proof assistant can help with finding design flaws in encoding.

• SMT solving is powerful for formal language research.
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