Automated Ambiguity Detection in Layout-Sensitive
Grammars

Jiangyi LIUT™ 1 Fengmin (Paul) ZHU' 2 Fei HE3

October 27, 2023

ITsinghua University and University of Wisconsin-Madison

2Tsinghua University and CISPA Helmholtz Center for Information Security
3Tsinghua University

t Equally contributed.

* This work was done at Tsinghua University.

What Are Layout-Sensitive Grammars?

Grammars where indentations and whitespaces affect parsing.

if False: if False:
print(1, end=" ") print(1, end=" ")
print(2) print(2)

Output: 2 # Output: Nothing

What Are Layout-Sensitive Grammars?

Grammars where indentations and whitespaces affect parsing.

if False: if False:

print(1, end=" ") print(1, end=" ")
print(2) print(2)
Output: 2 # Output: Nothing

X @& O B

Why Using Them?

e Elegant and stylized; no disturbing symbols

Why Using Them?

e Elegant and stylized; no disturbing symbols
e Readability counts — Zen of Python

Why Using Them?

e Elegant and stylized; no disturbing symbols

@ r/ProgrammerHumor - 9 yr. ago
& byb3n

A Python programmer attempting Java

Permuter
void permute(int n, char[] a)
(n 0)
System.out.println(String.valueOf(a))

oo Lane Nann |

(IRISIT="0:11 n; i++)
permute(n-1, a)
swap(a, n % 2 @71i:0, n)
void swap(char[] a, int i, int j)
char saved - ali]
ali] = aljl
aljl = saved

R S TR S S

Why Using Them?

e Elegant and stylized; no disturbing symbols
e Readability counts — Zen of Python

That programmer would love Scala 3!

object Permuter:

private def permute(n: Int, a: Array[Char]): Unit
if n == 0 then
println(String.valueOf(a))
else
for i <- 0 to n do
permute(n-1, a)
swap(a, if n % 2 == @ then i else 0, n)

private def swap(a: Array[Char], i: Int, j: Int) =
val saved = a(i)
a(i) = a(d)
a(j) = saved 2

Ambiguity Matters

A useful new layout-sensitive grammar should be unambiguous.

Manually Checking Ambiguity is Hard

Let's consider a layout-sensitive grammar:

| stmt
block — ||stmt||" | stmt;
stmt — nop | do block

" stmt,,

Manually Checking Ambiguity is Hard

Let's consider a layout-sensitive grammar:

| stmty
+ |
block — ||stmt]| | stmts
stmt — nop | do block
Q: Is this grammar ambiguous? | stmt,

It Is Ambiguous

do
nop

nop

[do®©(1,1),
nop@(2,1),
nop@(3,1)]

block

}

stmt™

!

stmt

7N

do@(1,1) block

|

stmt™

7N

stmt stmt

! |

nop®(2,1) nop®(3,1)

parse tree t;

block

|

stmt™

7N\

stmt stmt
Y\ N
do©(1,1) block nop@(3, 1)
|

stmt™

!

stmt

|

nop@(2,1)

parse tree t

Lessons

Ambiguity should be detected automatically, not manually.

Lessons

Ambiguity should be detected automatically, not manually.

e Q: But isn't ambiguity undecidable?

Lessons

Ambiguity should be detected automatically, not manually.

e Q: But isn't ambiguity undecidable?

e A: Find an incomplete but useful way.

Bounded Ambiguity Checking

Definition (Bounded ambiguity)
Given a layout-sensitive grammar G, is there a sentence of length up to k that has

multiple parse trees?

Bounded Ambiguity Checking

Axelsson’s! direct . bAMB with
bAMB Encoding extension? : layout constraints
SAT Solving fp=============d SMT Solving
Context-Free Grammar Our Initial Idea

! Axelsson, Roland, Keijo Heljanko, and Martin Lange. “Analyzing context-free grammars using an
incremental SAT solver.” ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part Il 35.
Springer Berlin Heidelberg, 2008. 8

Bounded Ambiguity Checking

Axelsson’s! direct
bAMB Encoding extension? : la constraiats
SAT Solving fp=============d SMT Solving
Context-Free Grammar Our Initial Idea

! Axelsson, Roland, Keijo Heljanko, and Martin Lange. “Analyzing context-free grammars using an
incremental SAT solver.” ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part Il 35.
Springer Berlin Heidelberg, 2008. 8

Bounded Ambiguity Checking

Axelsson’s!

bAMB Encoding

h 4

SAT Solving

Local Ambiguity
(our work)

Context-Free Grammar

~

SMT Solving

Our Idea

! Axelsson, Roland, Keijo Heljanko, and Martin Lange. “Analyzing context-free grammars using an
incremental SAT solver.” ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part Il 35.

Springer Berlin Heidelberg, 2008.

Framework for Layout-Sensitive Ambiguity Detection

SMT | Z3 SMT
encoding ’ solver

A

T / \ our tool

grammar
+ bound k

ambiguous
sentence +

parse trees

k-bounded

unambiguous

Framework for Layout-Sensitive Ambiguity Detection

OO C OO S SO A SO DS AOD S ACC o . _Y
c Local ~iff | Standard |: l(ij
| ambiguity | | ambiguity | -
E o E """"""""" ' our theory
[smMT ! [z3smT 'l
E encoding : 1 solver
l-----T ----- n / \ our tOO|
grammar ambiguous k-bounded
+ bound k sentence + unambiguous

parse trees

Axelsson’s bAMB Encoding

JON o8
ollleNo

)
) |

/N

: b
w

ty ity C

w w a

bAMB = subtrees differ on the first level

10

Axelsson’s bAMB is Unsound

The following grammer is unambiguous:

Bi—C|C B,—CC C—c

11

Axelsson’s bAMB is Unsound

The following grammer is unambiguous:
S— (A) A— B A— B

Bi—C|C B, -~ CC C—c

(-): all tokens derived are on the same line

11

Axelsson’s bAMB is Unsound

The following grammer is unambiguous:

Bi— C|C B,—CC C—c

- || -+ first tokens produced by both sides lie at the same column

11

Axelsson’s bAMB is Unsound

S—(A) A— By A— B

Bi—C|C B, —CC C—c

... but the following example satisfies bAMB:

C
C
A A
| J
Bl B2
7N\ 7N\
C C C C
| | | |
cO(1,1) ¢0©(2,1) cO(1,1) c©(2,1)

t1 (valid) # t, (valid) 12

Axelsson’s bAMB is Unsound

S —(A) A— B A— B

Bi—C|C B,—CC C—c

... but the following example satisfies bAMB:

(o4
(o4
A A
| |
Bl B2
VRN VRN
C C C c S S
| } } } | |
c0(1,1) ¢c0(2,1) c0(1,1) ¢c0(2,1) t t

t; (valid) £ t> (valid) T1 (invalid) T, (invalid) 12

Why This Happens to Layout-Sensitive Grammars?

The complete parse trees can still be malformed/invalid,

even if valid ambiguous subtrees exist!

13

Why This Happens to Layout-Sensitive Grammars?

The complete parse trees can still be malformed /invalid,

even if valid ambiguous subtrees exist!

Solution: drop subtrees that are unreachable from the start symbol.

13

Reachability (for Context-Free Grammars)

Definition
Nonterminal A is reachable? in context-free grammar G from symbol S if there exists a
derivation S =, aA(for some sentential forms « and f3.

2Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman. 2006. “Introduction to automata theory,
languages, and computation (3rd Edition).” Addison-Wesley Longman Publishing Co., Inc., USA.

14

Reachability (for Layout-Sensitive Grammars)

Given a subtree with A as root and derives sentence w

ep

37

Local Ambiguity

Intuitively, local ambiguity is essentially

bAMB A reachability

16

Local Ambiguity

Intuitively, local ambiguity is essentially

bAMB A reachability

Theorem
(Equivalence between (standard) ambiguity and local ambiguity)

(A, w) is locally ambiguous iff the derivation A=, w is ambiguous.

16

Encoding Local Ambiguity

O(k) £ dp(k) A Dx(K) A O(K)

AN [REAOui(H,0,0)) v \/ (RE5 A i (H, x,5))

HeN 0<d
x+6<k

e ®p(k): the sentence can be derived in given grammar}
bAMB
o & uii(H, x,0): at least two parse trees exist

o O%(k), ®%(k), RH, RH: reachability conditions

17

Soundness & Completeness of Encoding

Our encoding ®(k) is bounded sound and complete:

Soundness Any sentence w that satisfies (k) = w is ambiguous.

Completeness |If there exists an ambiguous sentence of length k, then ®(k) is
satisfiable.

18

Take-Home Messages

e Ambiguity is important in language design.
e Proof assistant can help with finding design flaws in encoding.
e SMT solving is powerful for formal language research.

Automated Ambiguity Detection in Layout-Sensitive
Grammars

JIANGYI LIU", Tsinghua University, China

FENGMIN ZHU*, Tsinghua University, China and CISPA Helmholtz Center for Information Security,
Germany

FEI HET, Tsinghua University, China, Key Laboratory for Information System Security, Ministry of Education,
China, and Beijing National Research Center for Information Science and Technology, China

https://lay-it-out.github.io/

Take-Home Messages

e Ambiguity is important in language design.
e Proof assistant can help with finding design flaws in encoding.
e SMT solving is powerful for formal language research.

Automated Ambi
Grammars

out-Sensitive

JIANGYI LIU", Tsinghua Ut
FENGMIN ZHU*, Tsingh
Germany

FEI HEY, Tsinghua University
China, and Beijing National R«

oltz Center for Information Security,

System Security, Ministry of Education,
ind Technology, China 19

https://lay-it-out.github.io/

	Introduction
	Local Ambiguity
	Conclusion

