
Automated Ambiguity Detection in
Layout-Sensitive Grammars

Jiangyi LIU1 Fengmin (Paul) ZHU1,2 Fei HE1

1School of Software, Tsinghua University 2CISPA Helmholtz Center for Information Security

Layout-Sensitive Languages

Whitespaces and indentations affect how programs get parsed.

def greeting():
print('Welcome to our poster' +

' and our talk at 15:12 Friday!')

indent(w1,w2) ≜ (w1 ̸= ε ∧ w2 ̸= ε)
⇒ w2[0].col > w1[0].col ∧ w2[0].line = w1[−1].line + 1

match solver_result with
| Sat model -> Ambig (decode model)
| Unsat -> Unambig
| _ -> Unknown

align(w1,w2) ≜ (w1 ̸= ε ∧ w2 ̸= ε)⇒ w1[0].col = w2[0].col

do grammar <- load "my_lang.ebnf"
sentence <- checkAmbig grammar
return $ AmbigResult sentence $
trees grammar sentence

offside(w) ≜ w ̸= ε
⇒ ∀t ∈ w : t.line > w [0].line⇒ t.col > w [0].col

Ambiguity Matters

Consider a grammar fragment:

block→ stmt∗

stmt→ var = expr | while expr do block | · · ·
This sentence has two different parses that are semantically different:

while x > 0 do
x = x - 1
x = x + 1

while (x > 0) {
x = x - 1;
x = x + 1;

}

nonterminating if x > 0

while (x > 0) {
x = x - 1;

}
x = x + 1;

terminating

parse 1 parse 2

Lamb: Layout-Sensitive Ambiguity Detector

our tool

Local
ambiguity

Standard
ambiguity

SMT
encoding

Z3 SMT
solver

grammar
+ bound k

ambiguous sentence
+ parse trees

k-bounded
unambiguous

iff

iff
our theory

where k is the upper bound length of the sentences being considered

A Tour of Lamb
Step 1: Input a grammar Gblock:

block→ ∥stmt∥+
stmt→ nop | do block

The alignment constraint ∥ · ∥+ marks the border of the do-block body,
so it distinguishes between

do nop
nop and

do nop
nop

Awesome! But is Gblock really unambiguous?

Step 2: Run Lamb
It finds a shortest ambiguous sentence (with its parse trees):

do
nop
nop

(a) ambiguous sentence

block

stmt+

stmt

do@(1, 1) block

stmt+

stmt

nop@(2, 1)

stmt

nop@(3, 1)
(b) parse tree t1

block

stmt+

stmt

do@(1, 1) block

stmt+

stmt

nop@(2, 1)

stmt

nop@(3, 1)

(c) parse tree t2

Users can fix the ambiguity issue manually with the aid of the produced
parse trees.

Step 3: Understand the cause of ambiguity
It is insufficient to tell whether the second nop statement belongs to
the do-block or the top-level block, even with the presence of the
alignment constraint.

Step 4: Resolve the ambiguity
A possible solution is to reject this ambiguous sentence via an offside
constraint ·▷ over the do-block:

block→ ∥stmt∥+

stmt→ nop | (do block)▷

Step 5: Check the refined grammar again
Lamb no longer finds any ambiguous sentence within a length of 20:
that is, bounded unambiguous!

More...
Check our website Read our paper

OOPSLA@SPLASH’23, Cascais, Portugal This work was supported in part by the National Natural Science Foundation of China (Grant No. 62072267 and Grant No. 62021002).

https://pages.cs.wisc.edu/~panda2134
https://paulz.me
https://feihe.github.io
https://lay-it-out.github.io
https://doi.org/10.1145/3622838

