Automated Ambiguity Detection in Layout-Sensitive Grammars

Jiangyi LIU ${ }^{1}$ \qquad Fengmin (Paul) $\mathrm{ZHU}^{1,2}$

Fei HE^{1}

${ }^{1}$ School of Software, Tsinghua University
${ }^{2}$ CISPA Helmholtz Center for Information Security

Layout-Sensitive Languages

Whitespaces and indentations affect how programs get parsed.

match solver_result with
| Sat model -> Ambig (decode model)
| Unsat -> Unambig
| _ -> Unknown
$\operatorname{align}\left(w_{1}, w_{2}\right) \triangleq\left(w_{1} \neq \varepsilon \wedge w_{2} \neq \varepsilon\right) \Rightarrow w_{1}[0] . \mathrm{col}=w_{2}[0] . \mathrm{col}$
do grammar <- load "my_lang.ebnf" sentence <- checkAmbig grammar return \$ AmbigResult sentence \$
trees grammar sentence
offside $(w) \triangleq w \neq \varepsilon$

$$
\Rightarrow \forall t \in w: t . \text { line }>w[0] . \text { line } \Rightarrow t . \mathrm{col}>w[0] . \mathrm{col}
$$

Ambiguity Matters

Consider a grammar fragment:

$$
\begin{aligned}
& \text { block } \rightarrow \text { stmt }^{*} \\
& \text { stmt } \rightarrow \text { var }=\text { expr } \mid \text { while expr do block } \mid \ldots
\end{aligned}
$$

This sentence has two different parses that are semantically different:

nonterminating if $x>0$
terminating

Lamb: Layout-Sensitive Ambiguity Detector

where k is the upper bound length of the sentences being considered

A Tour of Lamb

Step 1: Input a grammar $G_{\text {block }}$:

$$
\begin{aligned}
\text { block } & \rightarrow \| \text { stmt } \|^{+} \\
\text {stmt } & \rightarrow \text { nop } \mid \text { do block }
\end{aligned}
$$

The alignment constraint $\|\cdot\|^{+}$marks the border of the do-block body, so it distinguishes between

$$
\begin{array}{rll}
\text { do nop } & \text { and } & \text { do nop } \\
\text { nop } & \text { nop }
\end{array}
$$

Awesome! But is Glock really unambiguous?
Step 2: Run Lamb
It finds a shortest ambiguous sentence (with its parse trees):

Users can fix the ambiguity issue manually with the aid of the produced parse trees.
Step 3: Understand the cause of ambiguity
It is insufficient to tell whether the second nop statement belongs to the do-block or the top-level block, even with the presence of the alignment constraint.

Step 4: Resolve the ambiguity
A possible solution is to reject this ambiguous sentence via an offside constraint ${ }^{\triangleright}$ over the do-block:

$$
\begin{aligned}
& \text { block } \rightarrow \| \text { stmt } \|^{+} \\
& \text {stmt } \rightarrow \text { nop } \mid(\text { do block })^{\triangleright}
\end{aligned}
$$

Step 5: Check the refined grammar again
Lamb no longer finds any ambiguous sentence within a length of 20 : that is, bounded unambiguous!

More...
Check our website

