Automated Ambiguity Detection In
Layout-Sensitive Grammars

10
&
.

i

o

[=]
Jiangyi LIU! & Fengmin (Paul) ZHULQEIEI

T

>CISPA

1School of Software, Tsinghua University

[=];p%
Fei HE® Zfi

elmholtz Center for Information Security

A Tour of Lamb

Layout-Sensitive Languages

Whitespaces and indentations affect how programs get parsed.

A

indent(wy, wo) = (Wi # € A wy # €)

= w»|[0].col > wy[0].col A wy|0].line = wy[—1].line + 1
<

align(wy, wo) = (wy # € A ws # €) = wy[0].col = ws[0].col

def greeting():
print('Welcome to our poster' +
' and our talk at 15:12 Friday!")

match solver_result with

Sat model -> Ambig (decode model)
Unsat -> Unambig

_ —> Unknown

do grammar <- load "my_lang.ebnf”
sentence <- checkAmbig grammar
return $ AmbigResult sentence $
trees grammar sentence

offside(w) = w # €
= Vt € w: t.line > w|0].line = t.col > w]|0].col

Ambiguity Matters

Consider a grammar fragment:

block — stmt”
stmt — var = expr | while expr do block | - - -

This sentence has two different parses that are semantically different:

while x > @ do

X = X =]
X = X +]
parse 1 / \parseZ
while (x > 0) { while (x > 0) {
X =X - 1; X = x - 1;
X = X + 1;)
} X = X + 1;
nonterminating if x > 0 terminating

[Loca ff [Standard 5
i | ambiguity ambiguity)
... our theory
iii
grammar _.> SMT _ /3 SMT P
+ bound k : | encoding solver

/

ambiguous sentence
+ parse trees

\ our tool

k-bounded
unambiguous

where k Is the upper bound length of the sentences being considered

OOPSLAGSPLASH'23, Cascals, Portugal

Step 1: Input a grammar Ggjock:

block — [[stmt]||”
stmt — nop | do block

The alignment constraint || - ||~ marks the border of the do-block body,
so It distinguishes between
do nop do nop
and
nop nop

Awesome! But 1s Gy really unambiguous?

Step 2: Run Lamb
It finds a shortest ambiguous sentence (with its parse trees):

do
nop
nop

(a) ambiguous sentence

block block
| |
stmt™ stmt™
| /" \
stmt stmt stmt
AN / N\
do®@(1, 1) block do@(1,1) block nop®(3,1)
| |
stmt™ stmt™
RN |
stmt stmt stmt
| | |
nop@(2,1) nop®(3, 1) nop@(2, 1)

(b) parse tree t; (c) parse tree t;

Users can fix the ambigurty 1ssue manually with the aid of the produced
Darse trees.

Step 3: Understand the cause of ambiguity

It I1s Insufficient to tell whether the second nop statement belongs to
the do-block or the top-level block, even with the presence of the
alignment constraint.

Step 4: Resolve the ambiguity
A possible solution I1s to reject this ambiguous sentence via an offside
constraint -= over the do-block:

block — [[stmt||™

stmt — nop | (do block)~

Step b: Check the refined grammar again
Lamb no longer finds any ambiguous sentence within a length of 20:
that 1s, bounded unambiguous!

Check our website Read our paper

[=]

https://pages.cs.wisc.edu/~panda2134
https://paulz.me
https://feihe.github.io
https://lay-it-out.github.io
https://doi.org/10.1145/3622838

